Table of Contents
          
          
                Foreword
              
			 
              Table of Contents
              
              E.0 Executive Summary
          
            E.1.0 Introduction
              E.2.0 Markets
                E.2.1 Automobiles
   E.2.2 Consumer Electronics
   E.2.3 Industrial Controls
   E.2.4 Interconnection
   E.2.5 Home Networks
   E.2.6 Medical
   E.2.7 Homeland Security
E.3.0 POF as a Disruptive Technology
E.4.0 Market Forecasts
E.5.0 Technology
                E.5.1 Fiber Loss Trends
   E.5.2 Bandwidth Trends
   E.5.3 Step Index (SI) and Graded Index (GI) PMMA
   E.5.4 Perfluorinated Graded Index POF (PF GI-POF)
   E.5.5 Other POF Technologies
E.6.0 POF Associations and Interest Groups Trends
E.7.0 What are the Major Impediments to Further         Developments in the POF Industry?
E.8.0 New POF developments in 2012/2013
E.9.0 Opportunities
E.10.0 Market Demand
            
          
          1.0 Introduction
              
              2.0 Why POF?
          
          
            
	      2.1 Ease of connectorization
2.2 Durability
2.3 Large diameter
2.4 Lower Costs
2.5 Fiber Costs
2.6 Transmitters (Transceivers, Receivers)
2.7 Space Division Multiplexing is Possible
2.8 Receivers
2.9 Connectors
2.10 Test Equipment
2.11 Installation
2.12 Maintenance
2.13 Ease of Handling
2.14 Safety
2.15 Bandwidth
2.16 Developments of other types of fibers
2.17 Many markets are open to POF
2.18 Standards Situation is Improved
2.19 Growth Potential
2.20 Size Matters
2.21 PF GI-POF Takes Advantage of Low-cost Components Developed for GOF
            
            
          3.0 Comparison Between Copper, GOF, and POF
          
            
	    3.1 An Installer’s View
		   3.1.1 Installation Issues
		   3.1.2 Testing
		        3.1.2.1 Do-it-yourself POF Kits
		        3.1.2.2 Connectorless Connetions
            
          
          4.0 POF Historical Development and Organization
            
          
            
	    
	        4.1 Historical Perspective
		4.2 POF Organizations Worldwide
		   4.2.1 POF Developments in Japan
		   4.2.2 POF in the US
		   4.2.3 POF in Europe
		      4.2.3.1 France
		      4.2.3.2 Germany
		      4.2.3.3 European Commission
		   4.2.4 POF in Korea
		   4.2.5 POF in Australia
		   4.2.6 POF in Brazil
		   4.2.7 POF in China
		   4.2.8 Others
            
            
          5.0 Technical Characteristics of POF Fibers Systems
          
            
	        5.1 Basic Technical Components of Optical Fiber Systems
		5.2 Types of Optical Fibers
		   5.2.1 Step Index Fibers
		   5.2.2 Multimode Graded Index Fiber (MMF)
		   5.2.3 Single-mode Fibers (SMF)
		5.3 Plastic Optical Fibers
		   5.3.1 Materials used for POF
		   5.3.2 Attenuation
		   5.3.3 Perfluorinated POF
		      5.3.4.1 How Numerical Aperture of Fiber Affects Bandwidth
		      5.3.4.2 Methods to Increase Bandwidth
		      5.3.4.3 Increased Bandwidth Using Low-NA Source
		   5.3.5 Graded Index PMMA POF (GI-POF)
		   5.3.6 Perflourinated (PF) Graded Index POF (GI-POF)
		   5.3.7 Partially Chlorinated GI-POF
		      5.3.7.1 New GI PTCEMA
		   5.3.8 High-temperature Plastic Optical Fibers
		      5.3.8.1 Polystyrene
		      5.3.8.2 The Advantages of Polystyrene
		   5.3.9 Photonic Crystal Microstructured Polymer Optical Fibers
		      5.3.9.1 Microstructured Polymer Fibers
		   5.3.10 Summary Performance of PMMA and PF-GI POF (SI and GI)
		   5.3.11 Environmental Effects on POF
		   5.3.12 Manufacturing Methods of POF
		      5.3.12.1 Extrusion
		      5.3.12.2 Preform Drawing
		      5.3.12.3 Manufacturing Graded Index PMMA POF
		      5.3.12.4 Manufacturing PF GI-POF
		      5.3.12.5 Continuous Extrusion Process
              5.3.12.5 Continu ous Extrusion Process
                
            
          6.Light Sources
            
          
            
	        6.1 LEDs
		   6.1.1 Low NA LED
		   6.1.2 Low NA LED Source Perspective for POF Data Link
		   6.1.3 Materials and Available LED Wavelengths
		   6.1.4 Gigabit Links Using LEDs
		6.2 Resonant Cavity LEDs (RC-LEDs)
		6.3 Laser Diodes
		6.4 Vertical Cavity Surface Emitting Lasers (VCSELs)
		   6.4.1 Data Links Using Red VCSELS
		   6.4.2 Red VCSEL Transceivers for Gigabit Transmission over POF
		6.5 Outlook for POF Green and Blue Sources
		6.6 High Speed POF Receivers
            
          
          7.0 Optical Connectors and Splicing
            
          
            
	        7.1 Connectorization
		   7.1.1 POF Connector Requirements
		   7.1.2 ATM Forum
		7.2 POF Connect Types
		   7.2.1 PN Connector
		   7.2.2 Small Multimedia Interface (SMI)
		   7.2.3 IDB-1394 POF Interface and Latch Connector for Automotive Use
		   7.2.4 Packard Hughes Interconnect
		   7.2.5 Optical Mini Jack
		   7.2.6 Panduit Poly-Jack — RJ-45 Type
		   7.2.7 MOST Automotive Connector and Header System
		7.3 Splicing
		   7.3.1 Brookhaven Industrial Laboratory
		   7.3.2 Mechanical Splices
		   7.3.3 Ultrasonic Splicing
		7.4 OptoLock – Connectorless Connection
		7.5 Ballpoint Connector
            
          
          8.0 Couplers
          
            
	   8.1 Optical Busses and Cross-connects
		8.2 Switches using Couplers
            
          
          9.0 POF Cables
          10.0 Integrated Optics
          
            
	   10.1 Planar Waveguides and Other Passive Devices
10.2 Holograms
	    
          
          11.0 Lenses
          
            
	    11.1 Polymeric Lenses
   11.1.1 Ball Point Pen Collimator Lens
11.2 High-efficiency Optical Concentrators for POF
            
          
          12.0 Fiber Bragg Gratings
            
          13.0 Optical Amplifiers
            
          
            
13.1 Keio University
13.2 Model for Analyzing the Factors in the Performance of Dye-Doped POF Lasers
13.3 Plastic Optical Fiber with Embedded Organic Semiconductors for Signal Amplification
          
          
          14.0 Test Equipment
            
          
            14.1 OTDRs
            
          
          15.0 POF Systems - Ethernet Example
            
          16.0 POF Hardware for Ethernet
     
            
	  
            
16.1 Commercial Silicon for Gigabit Communication over SI-POF
16.2 Ethernet POF Media Converter for ITU Standard G.hn
16.3 G.hn Chip Sets
16.4 Gigabit Ethernet Standard
16.5 Gigabit Ethernet OptoLock
          
          
          17.0 Illustrative Examples of POF Data Communications Applications
          
          
            
	        17.1 Introduction
		17.2 Range of Applications
		17.3 Optocoupler Applications
		17.4 Printed Circuit Board (PCB) Interconnects
		17.5 Digital Audio Interface
		17.6 Avionic Data Links
		   17.6.1 Practical Experience in Military and Civilian Avionic Systems
		   17.6.2 McDonald Douglas
		   17.6.3 Boeing
		   17.6.4 Requirements for POF in Commercial Aircraft -Boeing
		17.7 Automotive Applications of POF
		   17.7.1 Automotive Harness Trends
		   17.7.2 Increase in Electronic Content
		      17.7.2.1 Different Data Busses in Automobiles
		   17.7.3 Automobile Standards
		      17.7.3.1 MOST Standard
		      17.7.3.2 1394 Automotive Working Group and IDB
		17.8 Local Area Networks
		      17.8.1.1 POF vs. Glass Comparison
		      17.8.1.2 Operating Experience
		   17.8.2 Codenoll
		   17.8.3 Mitsubishi Rayon
		   17.8.4 NEC Corp. Ethernet
		17.9 IEEE 1394 FireWire
		   17.9.1 Markets for 1394
		   17.9.2 Transmission Media
		   17.9.3 1394 as a Home Network
		      17.9.3.1 IEEE 1394 Proposed Costs
		17.10 Tollbooth Applications
		17.11 Factory Automation
		17.12 Medical Applications
		17.13 High Voltage Isolation
		17.14 Home Networks
		   17.14.1 CEBus
		   17.14.2 Over the Top (OTT)
		   17.14.3 “Capillary of Light” Home Network
		17.15 Test Equipment
		17.16 POF Sensors
		17.17 Security (Tempest)
		17.18 EMI/RFI
		17.19 Hydraulic Lifts
		17.20 Trains
		17.21 Controller Area Network (CAN)
		17.22 Point-of-sale Terminals
		17.23 Robotics
		17.24 Programmable Controllers (PLC)
		17.25 Video Surveillance
		17.26 High-speed Video
		17.27 Home Video
		17.28 Digital Signage
            
          
          18.0 POF Cost Comparisons
	  
            
18.1 Avago Cost Trade-off White Paper
          
          
          19.0 POF and Related Standards
            
          
            
	        19.1 What drives standards?
		19.2 Trends in POF Standards
		19.3 History of the Development of POF Standards
		   19.3.1 IEC
		19.4 Present Standards that Include POF
		   19.4.1 Process Control
		      19.4.1.1 Profibus
		      19.4.1.2 SERCOS (Serial Realtime Communication System)
		      19.4.1.3 Interbus
		   19.4.2 Automotive Standards
		      19.4.2.1 MOST
		      19.4.2.2 IDB-1394
		      19.4.2.3 ByteFlight
		      19.4.2.4 CEA Aftermarket
		   19.4.3 Computer Standards
		      19.4.3.1 ATM
		      19.4.3.2 IEEE-1394
		      19.4.3.3 Storage Area Networks
		      19.4.3.4 Supercomputers/Servers
		      19.4.3.5 Datacenters
		   19.4.4 Home Standards
		      19.4.4.1 CEBUS
		      19.4.4.2 ATM Forum Residential Broadband
		      19.4.4.3 IEEE-1394 Home Networking
		      19.4.4.4 ITU G.h
		   19.4.5 Consumer Electronics and “Over the Top”
		      19.4.5.1 Active Optical Cables
		      19.4.5.2 Over-the-Top-Enabled Devices
          
          
          20.0 Components and Testing
            
          
            20.1 Introduction
              20.2 IEC
              20.3 VDI/VDE
              20.4 Standards Summary
            
          
          21.0 POF Components - Present Status
            
          
            
	        21.1 POF Fibers
		   21.1.1 Mitsubishi Rayon
		   21.1.2 Asahi Kasei
		   21.1.3 Toray Industries Inc.
		   21.1.4 Shenzhen Dasheng Optoelectronic Technology Co. Ltd.
		   21.1.5 Asahi Glass
		   21.1.6 Nanoptics
		   21.1.7 OFS-Fitel (now Chromis Fiber Optics)
		   21.1.8 Redfern Polymer (Cactus Fiber) (Kiriama)
		   21.1.9 Nexans
		      21.1.10 Fuji Film
		   21.1.11 Luvantix
		   21.1.12 Optimedia
		   21.1.13 Jiang Daisheng Co. Ltd.
		   21.1.14 Sekisui Chemical Company
	    
            
          22.0 POF Suppliers
            
          
            
	        22.1 POF Cables
		22.2 Semiconductors (Transceivers) for POF
		   22.2.1 KDPOF
		   22.2.2 CoolSilicon/CoolPOF
		   22.3 Light Sources (Transceivers)
		   22.3.1 Light Emitting Diodes (LEDs)
		   22.3.2 Resonant Cavity LEDs (RC-LEDs)
		   22.3.3 Laser Diodes
		   22.3.4 VCSELs
		22.4 Photodiodes
		22.5 Connectors
		   22.5.1 Connectorless Technologies
		22.6 Couplers
		22.7 Test Equipment
		22.8 Splicing
		22.9 Media Converters
		22.10 Data Links
		22.11 POF Networks
		22.12 IPTV Equipment Providers
		22.13 Other POF Passive Components
		22.14 Other Active Components
            
          
          23.0 POF Component Price Trends
          
            
	        23.1 Impact of the MOST Standard
		23.2 POF Fiber Pricing
		   23.2.1 Step Index Fibers
		   23.2.2 Graded Index POF
		23.3 Cables
		23.4 Cable Assemblies
		23.5 POF Transmitters and Receivers
		   23.5.1 MOST Pricing
		23.6 Conclusions for POF Data Components
		23.7 Graded Index PMMA POF
		23.8 Perfluorinated GI-POF
		23.9 Partially Chlorinated Polymer
		23.10 Price targets for POF Components
            
          
          24.0 Market Drivers
            
          
            
	     24.1 Technology
              24.2 Standards
              24.3 Market Needs
              24.4 Government Funding
              24.5 Education of End Users
              24.6 Marketing Push
              24.7 Lack of Major Player
              24.8 Resistance to Change and Imbedded Infrastructure
            
          
          25.0 POF Markets and Forecasts
            
          
            
	        25.1 Automotive Market
		   25.1.1 How Big is the Market?
		25.2 Consumer Electronics Market
		   25.2.1 Connected TV Device Ownership
		25.3 POF Industrial Controls Market and IoT Market
		25.4 Home Market and IPTV / Ultra HD TV (4K&8K)
		   25.4.1 Market Forecast
		   25.4.2 UHD TV 4K/8K
		25.5 Interconnect Market
		25.6 Medical Market
		25.7 Total POF Market Potential
            
          
          26.0 POF Activities in Various Countries
            
          
            
	        26.1 US
		26.2 Plastic Optical Fiber Organization in Japan
		26.3 POF in Europe
		   26.3.1 French Plastic Optical Fibre Club (FOP)
		26.3.2 POF in Germany
		   26.3.3 POF in the UK
		26.4 POF in Brazil
		26.5 POF in Korea
		26.6 Spain
		26.7 Australia
            
          
          27.0 Opportunities in the Emerging POF Business
            
          
            27.1 Cables and Fiber
              27.2 Connectors
              27.3 Sources
              27.4 Couplers
              27.5 Test Equipment
              27.6 Splicing
              27.7 Hardware
              27.8 Data Links
              27.9 Distribution
              27.10 Design and Engineering
              27.11 Converters
              27.12 Systems Suppliers
            
          
          28.0 Strategies for Success in the POF Market
		  
		 
		  
			
            References 
			
				| Appendix 1: | Avago White Paper on POF Sensors | 
				| Appendix 2: | Avago White Paper on Fiber vs. Copper Links | 
				| Appendix 3: | 15 Years Polymer Optical Fiber Application Center – A Summary | 
				| Appendix 4: | List of POF Conferences, POF Symposia and POF WORLD | 
				| Appendix 5: | Mitsubishi Pencil and KPRI’s 4K/8K connector through multiple GI POF micro-collimators based on ball-point pen technology  |